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A METHOD OF DETERMINING MODAL DATA CF A NONUNIFORM BEAM
WITH EFFECTS OF SHEAR DEFORMATION AND ROTARY INERTTA

By Vernon L. Alley, Jr., Robert J. Guillotte,
and Lessie D. Hunter
Langley Research Center

SUMMARY

A recurrence solution including the secondary effects of rotary inertia
and shear deformation on discontinuocus nonuniform beamlike structures is pre-
sented for obtaining highly descriptive free-free natural mode data. Results
of other studies are included to ascertain the significance of the secondary
influences on the classical uniform beam. Numerical results are also included
for the application of the method to a first-stage and fourth-stage configura-
tion of a typical space research launch vehicle. The numerical results indicate
that shear deformation is generally the prime contributor of the secondary
effects on typical launch vehicle configurations; the major influences of the
secondary effects are seen in reductions in natural frequencies and in changes
to the mode slopes, mode moments, and mode shears.

INTRODUCTION

Natural vibration characteristics are frequently required for systems that
can be appropriately represented as free-free beamlike structures. Such struc-
tures are consistently encountered in the array of stages that comprise the
typical launch vehicle for space research.

An assessment of the natural vibration characteristics normally will
include the calculations of the fundamental frequencies of oscillation along
with a number of overtones. The deflected curves associated with each char-
acteristic frequency, known as either mode shapes, characteristic functions, or
eigenfunctions, are also desired data. In addition, the slopes, moments, and
sometimes the shears associated with the mode shape are provided. Special
definite integrals also are frequently computed, for example, the generalized
or effective mass of a mode.

These data have a variety of uses. Their most famliliar use is in providing
knowledge of natural frequencies for designing in order to avoid states of
resonant vibrations. This application is particularly important in designing
or qualifying the spin program for unguided launch vehicles. (Trajectory dis-
persion control is frequently accomplished by spinning a vehicle about its
longitudinal axis.) High dynamic stresses and even structural failures might




result if the roll frequency is near or coincident for an appreciable time to
one of the natural frequencies of the system.

In addition, the vibration response levels of a vehicle will generally be
high near the frequencies of the natural vibrations of the basic structure.
Knowledge of the probable distribution of the disturbance spectrum can provide
information for appropriate shock mounting of delicate payloads and can lead to
a proper choice of the dynamic characteristics of instrumentation.

Furthermore, calculated mode shapes and frequencies can be useful in
interpreting measured vibration data. For example, moment and shear data asso-
ciated with calculated modal responses are frequently used for rapid assessment
of the load significance of recorded flight data.

Probably the greatest value of modal data is realized in series solutions
of the differential equations of motion of the system for which they have been
generated. The well-known orthogonality properties of mode shapes, the fact
that the modes satisfy the appropriate boundary conditions for their particular
constraints, and the fact that the usual response of a beam system is adequately
described by superposition of a few modes make them ideal functions for such
applications, widely known as modal form solutions.

The modal form series solution is particularly adaptable to formulating
techniques for yielding gust, wind loads, ignition and separation responses,
and other transient loads. The modal form approach has also proven popular for
developing the characteristic equation of structures coupled with closed-loop
autopilot systems. Such analyses permit investigations of the stability bound-
aries of such systems and lead to proper galn levels and filter characteristics
to yield stable performances.

Such valuable applications of modal data have stimulated analysts to
develop a variety of analytical techniques to achieve increased accuracy and
scope of output with a minimization of input effort. Well-known and fundamental
considerations of beam vibration are presented by Den Hartog in reference 1.

The classical techniques of Rayleigh and Stodola are two of the methods dis-
cussed in detaill by Hartog. In reference 2, Scanlan and Rosenbaum describe the
classical procedure attributed to Rayleigh and Ritz along with the Myklestad
method. They proceed to meticulously outline a step-by-step matrix method
employing influence coefficients. This latter procedure has been formulated
into a rigorous matrix solution and is presented by Alley and Gerringer in ref-
erence 3., Houbolt and Anderson have organized the method of Stodola and pre-
sented other useful related material in reference 4. An interesting integral
series solution technique that is also an effective solution to the nonuniform
beam vibration problem is presented by Spector in reference 5. These references
are but a few of the publicized methods relating to natural vibrations of non-
uniform beams.

When the analyst is confronted with a particular assignment for computing
modal data, the choice of the most suitable method should be made in view of the
objectives of the assignment and the virtues and limitations that characterize
the methods. Energy methods following the concepts of Rayleigh or the
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Rayleigh-Ritz approach generally yield adequate results on frequencies but
possess weaknesses in the exactness and descriptiveness of the mode shapes and
their derivatives. The classical Myklestad method as well as the matrix method
of reference 3 treat the system as a number of lumped point masses coupled with
massless springs. These discrete mass models also yleld adequate frequency
data but suffer a loss in descriptiveness of the other modal data, particularly
in the shear curves associated with the modes. The Stodola process, or one
similar, requires iteration to converge on both frequency and mode shape.
Whereas the frequency is readily obtained to a desired accuracy, the mode shape
is not so readily made everywhere convergent to a prescribed accuracy. In addi-
tion, the procedure requires sweeping techniques to obtain modes of higher fre-
quencies than the fundamental. This operation frequently presents practical
problems due to degeneration in numerlical accuracy. The integral series method,
although capable of yielding both the fundamental and higher modes, presents a
formidable computing problem, the maintenance of sufficient accuracy in per-
forming numerically the required multi-integrations. In the original or classi-
cal form, all of the aforementioned methods omit the secondary influences of
rotary inertia and shear deformation. Many extensions to the classical forms
have been made throughout industry and government, yet few satisfactory methods
incorporating the secondary influences have been adequately described in gen-
erally available literature. Shear deformation introduces an additional source
of deflection to the customary flexural deformation considered in elementary
beam theory. Cross-section rotary inertia provides additional dynamic loading
to the system due to the rotational acceleration of the cross section of the
beam. In most slender beams the shear and rotary inertia contributions to
loading and deflection are small in comparison with those resulting directly
from bending. In multistage launch véhicles of conventional fabrication the
shear deformation is secondary to bending and the structure is generally so
slender that rotary inertia may also be ignored.

However, the use of fiber-glass stages has given unexpected emphasis to
the importance of shear. The low ratio of shear modulus to the flexural modulus
of elasticity of fiber glass increases the relative contribution of shear defor-
mation to bending and thus produces significant shear effects in geometries
that otherwise could be investigated adequately without considering secondary
effects.

In addition, when computing the modal data of beam systems with low length-
to-diameter ratios such as characterized by the upper stages of conventional
multistage launch vehicles, the inclusion of both shear deformation and rotary
inertia has been found to be important to data accuracies.

This paper presents another technique for computing modal data on nonuni-
form beams. The method has proven very satisfactory for accurately describing
not only the mode shape, but its slope, mode moments, and mode shears. The
method is inherently applicable to structures exhibiting numerous discontinu-
ities in their mass and stiffness properties and requires no discreting to an
analogous lumped mass system. The differential equations of motion of the beam
system are dealt with directly. Modes need not be computed consecutively as is
required by a number of other methods. The technique has been employed suc-
cessfully in obtaining accurate modal data up to the tenth mode on complex



structures. Furthermore, the formulation accurately incorporates the secondary
influences of rotary inertia and shear deformation.

The organization of the problem in the matrix form that follows has proven
to be highly practical in obtaining numerical solutions on a high-speed digital
computer. Also, the numerical integration technique that is an integral part
of the method has been found to be highly stable and accurate.

The detailed mathematical developments of the method are presented with
information pertinent to practical numerical solutions utilizing the digital
computer. Some data are supplied for assessing the probable importance of the
secondary influences. An example of the application of the method to a typical
four-stage launch vehicle is submitted with a study of the importance of sec-
ondary influences on the upper stage.

SYMBOLS
A cross~-sectional area in shear, in.e
"A" solution for superposition method
Ay value of ¥' at x; due to a unit value of ¥ at x,, in.”t
Ap value of V at x; due to a unit value of ¥ at x5, 1b/rad
a coefficient (egs. (30)), mpy,j0f, 1b-rad?/in.@
"B solution for superposition method
By value of W' at x; due to a unit value of { at xg, rad/in.
By value of V at x; due to a unit value of { at x4, 1b/in.
b coefficient (eqs. (30)), Z,41aP, 1b-rad?/in.2
Cy value of { at x; due to a unit value of ¥ at xg, in./rad
Co value of ¥ at x; due to a unit value of ¥ at x5, unitless
D maximum diameter of beam, in.; also used as determinant (eq. (32))
Dy value of § at x; due to a unit value of §{ at x5, unitless
Do value of ¥ at x; due to a unit value of ¢ at x,, rad/in.
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shear deformation coefficient (egs. (30)), 11

L
KAG’

modulus of elasticity in bending, 1b in.2

flexibility coefficient (egs. (30)), ﬁ%, 1b-l-in.-2

frequency equation (eq. (37))

modulus of shear, lb/in.2

area moment of inertia for a given cross section, in. b
coefficient for cross section in shear

effective spring constant of the rth mode; 1b/in. when mode
shapes are considered dimensionless

half increment (egs. (30)), Ax/2, in.
overall length of beam, in.

mode moment due to bending, in-1b

mass per inch of length, lb-sece/in.2

effective mass of the rth mode; lb—sece/in. when mode shapes
are considered dimensionless

matrix in recurrence solution of equation (27)
point in derivation

time, sec

mode shear due to bending, 1b/in.

column matrix of variables (see eq. (10))
coordinate along length of vehicle, in.

value of x at extreme left end of beam (lower boundary), in.
value of x at extreme right end of beam (upper boundary), in.
increment in recurrence solution, Xp47 - Xp, in.

rotary inertia, 1b-sec?



Subscripts:

A

n

r

matrix (see eq. (10))
matrix (see eq. (19))
matrix (see eq. (20))
deflection, in.

matrix (see eq. (21))

approximation of second derivative of variable (see egs. (12)
to (15) and (21))

cross-sectional rotation due to bending, rad
circular frequency, rad/sec

increment of « in trial solutions

"A" solution
lower boundary
"B" solution
upper boundary
body station

mode

Matrix notations:

{7
[]
[
L1

1

column matrix

square or rectangular matrix

inverse matrix

unit matrix

Primed symbols denote differentiation with respect to x.



DERIVATION OF THE METHOD

A derivation is presented for the differential equation of an oscillating
beam structure expressed as a set of four first-order differential equations.
A recurrence formula is established which relates the system variables (mode
shapes, mode slopes, mode moments, and shears, and their derivatives) at one
station of the beam to those at an adjoining station. 3Boundary equations are
established for the free-free system and a characteristic equation is obtained
for computing the critical frequencies of the system. Treatment of discontinu-

lties is considered in detail, and the orthogonality and equilibrium relations
are established.

Equations of Motion

A sketch is presented which shows the equations of motion.

U+ é& dx
ox
P
M
M+ &
* dx dx

ox

Unstrained axis




Consider the differential element of a beam of dx length in the sketch,

then the summation of the vertical forces on the element will yield

2
m§-£6x+§zdx=o
3t2 Ox

Summing moments about p and dropping second-order terms gives

2
Vax+23% ax - Mgy - 0
Jt2 ox

From elementary beam theory, it is known that

e

M = EI éﬁ
ox

where V¥ 1is the cross-section rotation due to bending which differs from

X /dx because of shear deformation.

(1)

(2)

(3)

(4)

Also, if -interest is confined to the undamped rth natural mode, solutions

of £, V¥, V, and M are assumed to have the form

xst) = Erlx)elort
¥(x,t) = bp(x)e™r®

V(x,t) = Vr(X)eia)I'tP
M(x,t) = Mr(x)ei‘”ri

where , 1is the angular frequency of undamped harmonic motion in the rth

mode.

It should also be noted that KAG and EI are functions of x only;

therefore

O(KAG) _ d(KAG)
Ax dx

(5)



d(EI) _ 4(EI)

ox dx

Substituting equations (5) in equations (1) to (4) and performing the indi-
cated differentiations gives the basic form of the differential equations for
the natural vibration of a beam, consideration being given to flexure, shear
deformation, and rotary inertia. Henceforth the subscripts will be dropped for
purposes of clarity, and the equations will appear as

_m2g+%=o (6)
V-zfy - =0 (7)
%+K%G-xy=o (8)

%-%=o (9)

0 0 0 -Zaf O -1 0
1 4 =0 (10)
0 -1 — <
1 0 0 = 0 0
0 o -1 O 0 © 0o X
| EIJ Q

where the primes denote differentiation with respect to x.

If the 4 X 8 matrix in equation (10) is denoted as B, and the 8 x 1
column matrix of unknowns as X, then equation (10) may be written as

[0 - o (1)

The matrix equation (eq. (11)) constitutes the equations of motion of the
system.
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Recurrence Solution

The following relationships are introduced and are based on the assumption
that the first derivatives of the system variables are linear over the small

increment x, to Xp4p1. Let (xp4y - Xp) = &x.

N
at ag
- 2 4 s (t)
& (2)
at 2
Eoey = —= Ax + by + 25 ()
n+l ax n > n ')
av av
m T Em )
(13)
a 2
Vol = o2 A+ ¥+ B ()
N
av. av
z;l - EEE + g (V)
> (1k)
av. 2
Vel = EEE-AX +Vp + ég_ An(V)
J
dMp 41 dMp )
== * Dxhp (M)
) (15)
2
Mp+1 = ggg'éx + My + é%* An(M)

/

At this point Ap(L), Ap(¥), et cetera, are to be regarded as undetermined.
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Equations (12) to (15) may be written in matrix notation:

an

nt+l

Cn+l

Wn+l

Wn+l

< Vn+l

Vn+l
Mp+1

Mh+l

- /

Let

-
0 O 0
0 O 0
0 O 0
0O 0 O
0 O 0 {
1 0 o)
0 1 ©
0O Ax 1

)

Ax 0
2
&x=
2
0 Ax
)
0 &2
2
0 0
0 0
0 0
0 0

M)
¢

(" <
A (E)

(V)

A (M)

~ S

(16)

(17)

11
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(18)

(19)




ot
@]
(@)
(@)

iR
o
o
o

o

rlR
o
o

[4- -
0 0 0

ol
o

and

(a(t)

%n(W)$
{Ar} = ﬁxn(v) (21)

)

Then, from the relationships (17) to (21), equation (16) becomes

() -BE-EE -

The system variables must now satisfy the equations of motion at any specified
station. That is, when x = xp+31,

[%n+%] {%n+%} =0 (23)
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by virtue of the constraint imposed through the following determination of the
A matrix. Substituting equation (22) in equation (23) gives

Bl Esl] {xn} . 52] {An} oy (o4)

Solving equation (24) for Ap yields

O B -

Thus, the variables A({), AN (V¥), et cetera which were undetermined in equa-
tions (12) to (15) are defined by requiring satisfaction of equation (23).

Substituting equation (25) into equation (22) gives the recurrence formuls for
the functions (, V¥, V, and M:

-1
{cl} = ]2 - Jez Eal] [52] e | S {x} (26)

It is expedient to perform the matrix manipulations to express equa-

tion (26) in the form
{%n+%} = [%n+%] {%%} (27)
-1
[Pn+]] = 11-18%2 [Bn+];] [82] Bn+1 51 (28)

where

14



From equations (10), (11), and (20) it can be seen that

- . 1
- = 1 0]
mn+l“’2 ) 0

Ax Ax
0 ~Zin 4] 0P = = -1
Ax 1 Ax
1 - = = o)
2 KAGp+1 2
0 -1 0 1 A
Elpyr 2
For convenience, let
\
a = mpy 0P
b = Zp+10P
-1
d = KAGn+l ?
_ -1
€= EIn+l
Ax
k = =22
e J

Then, equation (29) may be expressed as

— -
-ak 0] 1 0]
0 -bk k -1
Pn+1l| 2| =
1 -k dk 0
LO -1 0 ek |

The determinant D of this matrix is given by the formula

D = -ackt + (1 + bek?)(l + adk?)

(29)

(30)

(31)

(32)

15



By utilizing eguations (10), (11), (19), (20), and (30) and by performing
the matrix operations indicated in equation (26), the elements o? ?he matglx.
Pn+i’ which appears 1in equation (27), may be reduced to the explicit algebraic

i i i functions only of the
expressions given in equation (33). The elements are
sizuctural properties at xn and Xp.q, of the interval length A&Ax, and of the

unknown-frequency ®. Equations (32) and (33) provide the working relationships
for practical use of the recurrence formula given by equation (27).

a2fex®(1-0a)-d]  ax[er?(1-ba)-d] x 1 E2va)-dx [e(1-va)-g) a2 ek
i(1+vex?) 1+bel? 2 x [(-va)-d2  [e(2-ba)-d]x exd o
aekd aek? e?[ar?(1-0)-8]  erfa(1-ba)-1] ex? ek ek(1+aax?) o (l+adk2)
aext el w(1va?) Lraax® exd e ek? (l+adk2) ek(1+ad.k2) ( 33 )
)
n+l D .
a(1+ver)c af 1+be?) ai? ak a1 [e1(1-ba)-d]  ax[en®(1-va)-q] aekd aek
o +bex2)? a{2+5ex%)x ai’ a? K(1+ver2) Ltber? aexlt aek’
ax? ak Berva)-gx  [al(1-va)-g x 1 ex?[ar?(1-ba)~5  ek[aiR(1-va)-3)
ak3 ak? E2(1va)-5@  [ar(1-va)-n]x W2 x k(1+adx2) Leadi® J

Boundary Conditions

In the work that follows, the solution will be restricted to considera-
tions of the free-free vibration behavior. This mode of behavior is appropriate
to the in~-flight characteristics of launch vehicles. Henceforth, the sub-
seripts a and 1 indicate that the associated quantity is evaluated at the
lower boundary x = x5 or at the upper boundary x = X;, respectively. The

boundary conditions at both ends of a free-free beam require that
Condition (a):
Va‘—‘VZ-_‘-O

Condition (b):

16



Substituting condition (a) in equation (8) shows that

Condition (e):

v
[
Il

Va

Condition (d):

‘;T )

Substituting condition (a) in equation (7) gives

Condition (e):

=
il

“Z 0P,

Condition (f):

M;' =7 10.)2\)!1

Substituting condition (b) in equation (9) yields

Condition (g):

Solving equation (6) for dV/dx gives

Condition (n):

Condition (i):

V% = mlwggz

These conditions may now be expressed in matrix form.

boundary conditiocns it follows that

For the lower

17



and for the upper boundary conditions

.
g

]

\. ./

N

[}

Va

0

~Zg WY

a

L% )

(v )
)

0
L3}
myaPt
0
2708,

0]

. J

maagga ?

Calculation of Frequencies

(34)

Suppose now that a number of stations have been established at definite
points x, along the span of the beam. The system variables at all stations

are then uniquely determined if values are assigned to Ca,

18
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Equation (34) determines the system variables at x = x5. Equation (27) yields
the system variables at x = x, in terms of the values at x = x4. Once the
variables at x X, are known, equation (27) may be used again to compute the

variables at x = s S and this process may be continued until the system

variables at all stations are known. This process will be termed "a solution
of the system”" for the given values of Ca, Vg, and . The principle of

superposition of solutions is employed by using an arbitrary value of w in
two separate solutions. The first solution has €5 =1, Vg = O and is called
the "A" solution; the second has {y = 0, V¥, =1 and is called the "B" solu-

tion. Then by using conditions (a) and (g) of the section on boundary condi-
tions, it can be concluded that

7] via Vis|(Va Ay Byl (Vg
= = =0 (36)

The subscripts A and B designate the separate solutions for the afore-
mentioned boundary constraints. The coefficients A;, A,, By, and B, are
essentially influence coefficients where A; and Ap are the values of v
and V, respectively, at x; due to a unit value of ¥ at xg. The values
of V' and V, respectively, at x; due to a unit value of £t at x5 are
termed By and Bo.

Nontrivial solutions of equation (36) exist if, and only if, the determi-
nant of the square matrix is zero. The natural frequencies are therefore deter-
mined by the equation

Al By

=0 (37)
Ap Bg

hereinafter referred to as the frequency equation f(w). The coefficients of
equation (37) are frequency dependent as is evident from inspection of the
Pp+1 matrix defined by equations (30), (32), and (33). This frequency depend-

ency permits the satisfaction of equation (37) and yields the natural frequen-
cies of the system. Also, from superposition of the "A" and "B" solutions, the
following additional relationships can be stated:

19



= = J (38)
AJ) Via ViB| |Ca Ca Dol |8,
where Cj;, Cp, Dy, and Do are influence coefficients for €; and V.
From the second row of equation (36)
ApVg + Bty =0 (39)
Hence,
Bt
Y, = - =228 (40)
Ap
From the first row of equation (38)
1 = Covg + D1y (41)
Solving equation (41) for ¢, and substituting equation (L40) for W,
gives
e - eh
® ApD; - BCy
and normalizing in terms of CZ =1 yields
Ap
lg = ——=— (L2)
& ApDy - BoCy
Substituting equation (42) in equation (40) yields
-Bo
vy = ——8M8M8 — (43)
ApDy - BCy

Tt 1s reminded that the appropriate values of A3, Ap, By, Bp, Cj,

Co, Dj, and Dp are only those associated with "A" and "B" solutions
satisfying equation (37). The numerical procedure in obtaining valid solutions

20




is to perform trial solutions for assumed values of @ wuntil equation (37) is
satisfied. The lowest frequency satisfying the equation yields the fundamental
natural mode of vibration. Succeeding higher frequencies, which satisfy equa-~
tion (37), yield the progression of overtones or higher modes.

Mode Shapes and Related Data

The coefficients A; to Dp associated with the proper values of
which satisfy equation (37), when substituted into equations (42) and (43),
yield appropriate initial values of {5 and V, for the mode shapes. The

recurrence formula of equation (27) relates the modal characteristics at a given
station to an adjacent station. Thus, having the initial values leads to a
complete solution for all statlions. Such a solution yields the mode shapes,
cross-section rotations, mode moments, mode shears, and the first derivatives
with respect to x of each function.

It should be noted that in letting Ql equal unity in obtaining equa-

tions (42) and (43), the system variables derived from use of the two relation-
ships are henceforth compatible with the mode shape normalized at x = X3
(i.e., 1 = 1). For purposes of preventing conflicts in units, it should be
understood, that the form of the system variables, when CZ =1, is in essence

e -

That is, £, V¥, V, and M from a final solution are actually the ratios
En/C1s ¥n/ti1s Vn/ty, and M/, respectively. These ratios are the system

variables per unit of mode deflection at x = x3.

Treatment of Discontinuities

In most practical problems associated with nonuniform beams, EI, KAG,
Z, and m exhibit many discontinuities over the range x, <x < x7. Conse-

quently, provisions must be made for a convenient solution across discontinu-
ities. When a discontinuity is crossed, the system variables have to be
reevaluated.

From physical consideration V¥, ¢, M, and V are continuous, and it
will be shown that V', ¢', M', and V' are discontinuous.

Let the subscripts (-) and (+) denote values of system variables at a

discontinuity which is approached through values of x lower than or higher
than, respectively, the value of x at the discontinuity.

21



Then from equation (9) where M_y = M(y)

dv M
(+) - (=) (45)
dx EI(+)

From equation (8) where Vioy = V(4) and V() = ¥(4)

Eey _ V()

= YO Tmo, (6)
and from equation (7)

daM

) = vy -z Ry (57)

From equation (6) with C(_) = §(+)

dx+) - m(+)w2§(-) (48)

The relationship across a discontinuity may then be shown in matrix form

-~ =~

1
0 0 0 1 -KAG(+)
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 EI;)
{x(+)}= 0 0 0 1 0 0 0 0 {c(_} (49)
0 m(+)w2 0 0 0 0 0 0
0 0 o) 0 0 1 0 0
0 0 0 -ZyywP 0 1 0 0
0 0 0 0 0 0 0 1

22



This relationship is exactly satisfied when Ax = O 1is entered into Ppyj

of equation (33). This contributes to the efficiency of the method for use in

conjunction with high-speed digital computers because the same recurrence for-

mulas are used to relate system variables across a discontinuity as are used to
relate variables across a finite interval.

Orthogonality Condition

One of the major uses of natural mode data is in modal form series solu-
tions. Their practical applications in series solutions is a result of the
many simplifications that result from their orthogonality relationships. These
relationships for modal solutions, restricted to elementary beam theory, are
well known and widely referenced in reports and standard texts on elementary
vibrations. The addition of rotary inertia and shear deformation alters the
conventional relationship and a clear description of the orthogonality rela-
tionship for nonuniform free-free beams with secondary effects is considered
essential to the completeness of this paper. In reference 6, Leonard derives
the orthogonality relationships for the uniform free-free beam with shear
deformation and rotary inertia. In the following discussion, the conditions
for the nonuniform free-free beam will be set forth.

Substituting equation (8) into equation (6) and adding subscripts to ¢
and VY to designate the specific mode r yields

¢
2€r + = KAG(&'IL - Wr> =0 (50)

Also, substituting equations (8) and (9) in equation (7) gives
dt.. ay
_ T 2y, - Slgr T <
KAG(\J;I. dx) Zap Wy dx(EI — ) 0 (51)

Multiplying equation (50) by ¢, and (51) by V,, adding both results
together, and integrating over the length of the beam, yields

wrzj;a (mgncr + Z\lfn\lrr>dx - -J:{a by L KAG(zix—r - wr> dx
X3 \lfr>
" Lfor )
—foKAG(w —C-li-wr> (52)
n dx rvn

Xg,
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Since the r and n subscripts have been selected arbitrarily, equa-
tion (52) is equally valid when expressed by reversing r and n.

Making
this reversal yields
wflgf (mcngr + Z‘l’n‘l’r)dx = -f €r 4 lxag| 22 - V|| dx
Xa Xa dx dx
T4 d\lrn>
= ¥, —I{EI ——]dx
L/;a i ¢X< dx
XZ di
- KAG(Wr Sn wrnwr>dx (53)
Xa

Expanding equations (52) and (53) by integrating, by parts, the first and
second terms on the right-hand side of the equations and then subtracting the
extended version of (53) from the extended form of (52) will yield

@r~ = ®n (anCr + ZWnWr)dx = - KAG = Yy + L KAG = ¥n
Xa Xa Xa
- VBT —EE + VEI _EE (54)
dx Xq dx Xg
For the free-free boundary conditions
~
ag %1
KA.G’(E-X—H - Wn) xa = n(Xa) - Vn(Xz) =0
Equally valid
avy |*1 >for n or r (55)
EL —=| = My(x) - Mn(xg) = O
Xa

v

With these relationships, equation (54) leads to the final conclusion that

(wrg - wn2> f Xz(mcncr + zwn¢r>dx =0 (56)

Xa
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and when oy # wp, it is necessary that

fxz(mcngr + anwr)dx =0 wy £ o (57)

Xa

When wn = wp, it is usual to define the preceding integral as the effec-
tive mass of the mode.

X3

— (mcf + zwf)mc on = ar  (58)
X
a8

To avoid confusion and to obtain the effective mass in terms of mass units

(lb—sece/in.), it is necessary only to interpret the symbols (, and V¥, as
applicable to the dimensionless mode.

Now, instead of subtracting as was done to obtain equation (54), the equa-

tions are added; then with the additional results of equation (57) when n # r,
it is found that

be
JF 1 I g;ﬁ g;g + KAG(liE - W;)(;éﬁ - Wr) dx = 0 nf¢r (59)

Xg,
and when n = r, it is usual to define the preceding integral as the effective
spring constant of the mode:
2

2
X dy d.
kp = a&gmr = b/‘ L EI di + KAG Eéz - w;> ax n=r (60)
Xg,

Il

where the same statement regarding units for equation (58) applies.

Equations (57) and (59) are the orthogonality properties of the free-free
beam of variable mass and stiffness with shear deformation and rotary inertia.

Equations (58) and (60) are useful relationships defining the effective

mass and effective spring of the rth mode referenced at the normalizing point
of the mode shape {, = 1.
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Equilibrium Relationships

In addition to the useful orthogonality relationships, two other valuable
integrals associated with the equilibrium of the mode are frequently encoun-
tered. For the free-free system to possess dynamic equilibrium while under-
going natural vibrations, the following relationships prevail:

JFXZ mf,. dx = O (61)

Xg,

1 mf.x + Z¥yp)dx = O (62)
INCESED

Xg,
SOME ASPECTS OF APPLICATIONS

Basic relationships for the recurrence solution of the beam vibration
problem are given in equations (27), (30), (32), and (33). The natural fre-
quencies are obtainable from equation (37). Orthogonality and equilibrium
relationships are given in equations (57), (59), (61), and (62).

Descriptiveness of Output Data

The type of solution set forth by the foregoing equations is inherently
adaptable to producing highly descriptive modal data. It has been shown by
equation (49) that W', ¢', M', and V' are discontinuous functions by vir-
tue of discontinuities in EI, KAG, Z, and m. The quantities obtained by
the solution are of equal descriptiveness to that of the input data; that is,
for every discontinuity in input data (EI, KAG, Z, and m) there will result
an associated discontinuity in the output functions. The quality of these data
cannot be equaled by the discrete mass methods of analysis such as that of ref-
erence 3, The method is also inherently suitable for automatic digital-
plotting routines since the input can be supplied or generated by interpolation
to a definition as fine as desired to give an acceptable plot of output.

Numerical Solutions

The successful use of the foregoing formulation 1s largely dependent on
the details of the computer program. Several important features to be observed
are set forth in the following text.

Machine time.- Improper programing can result in lengthy computing times
yielding unreasonably costly data. Conversely, proper programing for minimum
computer time can be most rewarding with the subject formulation. For example,
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programing the inverted and extended form of equation (28) given by equa-

tions (32) and (33) reduced the machine time to one-fourth that required by a
program performing internally the operations of equation (28). Unduly stringent
accuracy requirements in determining the natural frequencies by equation (37)
can also result in exorbitant machine time. Extensive use of the method of

this paper has indicated that three modes with frequency convergence to 0.1 per-
cent error can be achieved with around 300 stations of input data to an IBM TO9k4
electronic data processing system in about 5 minutes. It should be noted that
thils accuracy on frequency is valid for the mathematical model but it is not
indicative of the accuracy of predicting the frequencies of the actual struc-
ture. The accuracy is obviocusly dependent on the appropriateness of the math
model.

Attempting to satisfy upper boundary conditions to unneccessary accuracies
can also be costly. For example, Wi, Vi, and M; are zero for the free-free

boundary case. These absolute conditions cannot be achieved by digital com-
puters. The analyst, however, should accept finite boundary values that are a
fraction of 1 percent of the peak absolute values of thelr respective functions
over the total span x5 < x < Xy . Boundary values which are zero correct to

the fifth significant figure of the maximum value of a function can readily be
obtained.

Near zero stiffness.- In applying the recurrence technique of this report
the unwary analyst can be confused and misled by using inputs of KAG and EI
that are near zero at or near the upper boundary position. This condition is
encountered particularly with pointed nose cones or other similar structures
that essentially taper to zero. The problem manifests itself in a radical
variation of the mode shape in the area approaching the upper boundary of the
span. This variation is a combined result of near zero stiffness of XAG
and/or EI and the failure to achieve numerically the absolute theoretical
zero boundary condition. This condition is readily corrected by avoiding, near
the free ends, KAG and EI input values of less than 0.0001 of their respec-
tive average values over the total span.

Superposition for final modes.- The sequential nature of a solution by
the method proposed in this paper is as follows: First, obtain for a variety
of frequencies the influence coefficients A3, Ap, B1, and Bo by the "A"
and "B" solutions discussed in "Calculation of Frequencies." From this trial
technique, a frequency is discerned to a desirable accuracy that will satisfy
the frequency equation (eq. (57)). Second, after obtaining a natural frequency,
the influence coefficients associated with the critical frequency are substi-
tuted into equations (42) and (43) to obtain the boundary values ¢, and Vg

associated with the normalized natural mode. Finally, with the knowledge of
w, g, and Vg, all initial conditions and coefficients can be fully ascer-

tained, and the recurrence solution of equation (27) can be extended over the
total span. This solution yields data on all of the system variables for all
desired stations. An important feature associated with this last operation

should be noted. Entering Ca and V5 simultaneously into equation (27) in

the final solution for the modal characteristics is a different digital opera-
tion than the original procedure of superposition that led to knowledge of s
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and V¥,. Consequently, a simultaneous solution will result in different dig-

ital round-off errors that will reduce the accuracy of the final boundary
values below that previously established by superposition. ©Since a large num-
ber of significant figures are essential to the mechanism of the numerical
solution, a duplicate procedure for the initial operation is recommended in
obtaining the final modal data. The available values of Ca and V5 should
be used in independent "A" and "B" solutions and should be combined at corre-
sponding x stations to obtain the desired final modal data.

Integration intervals.- The fundamental differential equations of motion
given by equation (10) are all of first order. Integration is performed on all
variables with the assumption of linear variations of the first derivatives as
defined by equations (12) to (15). For this assumption to be acceptable, the
Ax interval must at all stations be suitably small. Studies on interval sizes
have shown that adequate results are normally obtainable by describing the
physical characteristics of a vehicle at all points of discontinuity with the
added constraint that Ax = L/100. The latter constraint is easily programed
into the computer and obviates a large amount of repetitive input data over
long constant sections. In addition, where continuous but nevertheless radical
variations occur in the input functions, additional stations should be included
to insure that the variations are adequately defined.

Frequency search technique.- The economy of the machine solution is inti-
mately associated with the iterative technique employed to obtain the unique
frequencies that will satisfy equation (37). Equation (37) is of the form

f(w) =0

and must be solved by trial and error.

Successful results have been achieved by performing repeated trial solu-
tions for f(w) by systematically increasing the frequency by Aw until a
sign change is indicated, i.e.,

f(a}r*l)

(an) <0

where o is the nth trial value. At this point, a second-order (parabolic)

curve fit is applied to points at f(aﬁ'l), f(wn), and f(wn+l) and the
resulting analytical expression can be solved for o where f(w) = O. This
operation can be continued with each improved frequency until the difference
between successive frequencies is less than some preassigned tolerance.

Convergence can be hurried by good estimates of Aw for the specific
problem and refraining from a too stringent tolerance in frequency. Increasing
N and the frequency tolerance for successive overtones is also advantageous
in maintaining machine time within practical limits.
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Secondary Influences

A principal objective of the mathematical development of this paper was to
provide a means for including, as well as investigating, the effects of the sec-
ondary contributions of shear deformation and rotary inertia in modal analyses.

Comparison with classical cases.- Studies have been made by comparing the
classical or exact modal data for uniform free-free beams without secondary
effects with data obtained by the subject recurrence technique with secondary
effects. The two methods, secondary effects being excluded, agreed to an accu-
racy of greater than 0.0l percent on the first three mode frequencies, mode
shapes, and nodal points. It was felt that this agreement qualified the numer-
ical technigue for use in further comparative studies.

The salient results of some studies to determine the significance of shear
and rotary inertia on the classic uniform beam are furnished in figure 1. Data
were derived for a solid cylin-

drical beam and for a thin-wall Length-to-dianctes ratio, L/D
cylindrical beam of a thickness- 100 3 i 2 2 D
to-diameter ratio of 0.015. )Q;ijf??fif': == | |
Since the effectiveness of shear ;5 el

deformation is dependent upon 8 / /;>/

the ratio of the shear modulus "N /5 ¢  mgnevsiied eytinger

G to the bending modulus E, %o /'ﬁ i Prebd sl " M oyltader o ary
the studies were made for both 6 / Thirdj nodes : inertie or shear deformstion
fiber-glass and steel beams. It /’ inertia and shear deformetion
can be seen from the curves for //

the steel beam, that for either A

of the cross sections the com-

bined secondary influences (a) Steel beam.

caused frequency reductions in Length-to-diameter Tatio, L/D
the first three modes of not 0 5
greater than 5 percent when ¥
ratios of length to diameter -
(L/D) are greater than 20. This . D |
frequency reduction compares . (- ' ’ . o §gg§;§§;@°L7§afegs
with those reductions of up to N First modesi— / — s Nﬁqéwg;%go
14 percent for values of L/D |t meer 7 e T
greater than 20 for fiber-glass ‘ e I
beams. The value of G/E for — *W%ZZEE?’b——iZEF—
the fiber-glass beam was 0.20 . // T—F L;;___4
whereas that for the steel beam ’
was 0.42. It is also evident (b) Fiber-glass beam.
that the frequency reductions
for both the steel and fiber- Figure 1.- Effects of rotary inertia and

shear deformation on the frequencies
glass beams are more pronounced of free-free vibrations of uniform
for the thin-wall cases than for cylindrical beams.

the solid beams. As the aspect

ratio (L/D) decreases, the reduction in frequency becomes quite pronounced and
reaches more than 50 percent in the third mode for the thin-wall cases for
aspect ratios of 4 and 7 for the steel and fiber-glass beams, respectively.
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In reference T, Kruszewski presented closed-form solutions for the uni-
form beam with shear deformation and rotary inertia. The report gives general
data for readily determining the significances of the secondary influences for
general beam cross section and elastic properties. The curves of figure 1
obtained by the numerical procedure of this paper were checked against the data
from the closed-form solution of reference 7 and were found to be in nearly
perfect agreement. This comparison further qualifies the numerical technique
as a satisfactory and accurate procedure for incorporating the secondary influ-
ences into the beam solution.

Effects on launch vehicle.- The six data points given in the fiber-glass
curves of filgure 1 show the frequency reductions due to secondary influences on
a four-stage space vehicle with L[D = 25 and the fourth stage of a space
vehicle with L/D =5, Of the first-stage length 3.5 percent was fiber glass
and 26 percent of the fourth-stage length was fiber glass. The first-stage data
reveal reductions greater than those predicted for thin-wall steel beams but
are less, as would be expected, than those for thin-wall fiber-glass beams.

The fourth-stage frequencies for L/D = 5 were significantly reduced by
the secondary effects and closely correspond to the reductions predicted for the
thin-wall fiber-glass beam. It appears that the fiber glass appreciably con-
tributed to the frequency reduction even though the fiber glass extended over
only one-fourth of the stage length. The fiber-glass section extended over a
span running from 0.23 to 0.55 of the length which was a region subjected to a
significant proportion of the shearing action. The specific vehicle for which
these data were derived is documented further in the section entitled
"NUMERICAL EXAMPLE."

Measure of significance.- The aforementioned considerations suggest the
usefulness of the curves of figure 1 in estimating the probable significance of
shear deformation and rotary inertia in free-free natural frequencies of launch
vehicles. Both the vehicle data and the curves clearly indicate the necessity
of including secondary influences 1f accurate analyses are desired on low-aspect

ratio structures.

NUMERICAL EXAMPLE

An example is presented of an application of the recurrence solution to
the actual research vehicle illustrated in figure 2. Solutions have been pro-
vided for the first- and
fourth-stage configurations
First-stage separation Second-stage separation Third-stege separation of flight. These two cases
are submitted to show an
actual numerical example
derived from the subject
method and to illustrate
the varying importance of
secondary effects with the
vehicle's length-to-diameter
ratio. The basic physical

Figure 2.- Typical multistage research
launch vehicle.
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characteristics of the vehicle required as input to the program have been
recorded and submitted in table I. The tabulation provides input for both
cases by taking the physical characteristics at x = 619.85 as the first
applicable quantities for the fourth-stage analysis.

Frequency Data

In table IT, the frequencies and percent reduction in frequencies are
given for the first three modes of vibration for the two stages of the vehicle
of figure 2. The data are displayed for analyses without the secondary effects,
with both effects, with rotary inertia only, and with shear deformation only.

Inspection of the data for the first stage will show only small effects of
shear deformation and rotary inertia. The influences grow progressively with
increasing modes as would be normally anticipated. The maximum contribution of
rotary inertia and shear deformation is seen to be a reduction in frequency of
slightly less than 5 percent on the third mode. The first-stage configuration
has a length-to-diameter ratio of approximately 25. In the fourth-stage con-
figuration with an aspect ratioc of 5.0, the importance of rotary inertia and
shear deformation are quite evident. The combined secondary influences produce
a reduction of 58 percent in values computed without consideration of shear
deformation and rotary inertia. The significance also increases with increasing
modes. These results strongly suggest that for reliable frequency calculations
on the upper stages of typical launch vehicles, consideration of the secondary
contributions to flexure must be given.

It is interesting to note, however, that good results would have been
obtained in all cases shown by incorporating in the solution the effects of
shear deformation only. The frequency error most affected by the secondary
influence (third mode of the fourth stage) would be slightly less than 7 per-
cent if shear deformation only had been considered.

Elastic Curve Characteristics

A graphical comparison of the modal functions for the first three natural
modes for the first stage of the example vehicle would reveal only trivial
departure from concurrency. However, it will be shown later that this is not
the case for the fourth-stage configuration where the secondary effects have
been shown to be appreciable.

Mode shapes.- In figure 3, the fourth-stage mode shapes { are compared
for solutions with and without secondary effects. The comparison of mode
shapes was accomplished by the application of the method of least squares. 1In
spite of the severe reductions noted in frequencies, the first three mode
shapes retain similar graphical characteristics.

Mode shape inflections near tips.- An interesting elastic curve character-
istic should be noted that results from the inclusion of shear deformation.
For beams with secondary effects, an inflection in the mode shape is frequently
observed near one or both of the free ends and outboard of the outermost nodal
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point. Inspection of either of the
three modes of figure 3 will indicate

AL L T itn oty e e an ueer defornstion the inflection or reversal in curva-
éL 1 o ture on the right-hand end in the
t \\\\\\\\\\ = viecinity of x = 90 inches. The
° ~— inflection point occurs when the sec-
Al - ond derivative of the mode shape
becomes zero. An expression is
tr > readily obtained by differentiating
ég 0 T ///// equation (8) that indicates the
? s S~ parameters involved in the phenomenon,
ny that is
_2_/ L/D = 5.0 »
y it §<_‘z_>__d_uo (63)
5 Sm— ye i KAG | ~ &
' N , ‘ \T\\**’f// J since
o 20 ko 60 80 300 2
X, inches d C _ O
ax?

Figure 3.- Effects of rotary inertia
and shear deformation on mode
shapes of a low-aspect-ratio
upper stage of a launch vehicle.

at the inflectlon point, and
2
o
ax2

to the right of the inflection point. Then it follows from equation (63) that
for the dip in the elastic curve on the end to occur

4 v >4 (64)

dx KAG =~ dx

Equation (64) simply states that when curvature contribution due to shear
deformation is greater than the curvature contribution to the elastic curve due
to bending, the inflection near the tip will be evident. In elementary beam
solutions, shear deformation is not considered; this case corresponds to the
limiting case where KAG - »., It is then obvious from equation (64) that for
cases where shear deformation is ignored, the shear deformation contribution to
curvature is zero and the conditions of equation (64) can never be realized.

Mode slopes.- A pronounced departure between data computed with and with-
out secondary effects is seen in the comparison of mode slopes in figure L,
The so0lid curves are the slopes computed without shear deformation and rotary
inertia. The dashed curves were computed with secondary effects. The slopes
are compatible with the amplitudes of the mode shapes given in figure 3 as
established by the least-squares method. The most conspicuous differences are
the discontinuities that are evident in the data incorporating rotary inertia
and shear deformation. The discontinuities result from shear deformation and
are not evident in results without shear deformation, whether including rotary
inertia or not. Accurate mode slopes frequently are required in system
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stability studies of autopilot

Without rotary inertia and shear deformation

structural feedback. It is evident == - —Vith rotary inertia and shear deformation

from figure 4 that, for accurate , T = S

structural feedback analyses on %l o e -

short L/D configurations, the sec- © _05:—:::::f:::¢7’//

ondary effects, particularly shear

deformation, should be included in P -~

developing the required mode slopes. éé,m:1 o N /,//4‘?iifi_
' \\ /f/

Mode slopes compared with -1t =~ Lp =50
cross-section rotation.- In elemen- o _
tary beam theory, which ignores both - N
rotary inertia and shear deforma- T B
tion, the cross-section rotation is o X , , , N
quantitatively the same as the 0 20 ko 6o 8 100
slope. The differences between the %, inches
slope of the elastic curve £' and
the cross-section rotation V¥ are a Figure 4.- Effects of rotary inertia

and shear deformation on mode
slopes of a low-aspect-ratio
upper stage of a launch vehicle.

further measure of the significance
of secondary effects. A comparison
of these modal functions is shown
graphically in figure 5 for the

fourth stage of the example vehicle. ¢ Mode slope

The observed differences between 05 ¢ Yoo Crose-meetion otatien
£' and V¥ are completely a First mode T T T
result of shear deformation and ° -~

are not evident in solutions
ignoring shear.

4
o
v

-

— Second mode
-
~ =
~ N — ———

o

Load Characteristics

redians/in. mode deflection
'
—

.

of Modes O
Third mode
0 /_\ _ /_,//

The moment and shear dis- AT T TN
tributions for the fourth stage SEN - o @ P v
of the example vehicle of fig- X, inches
ure 2 are submitted in figures 6
and 7. Comparative curves are Figure 5.- Comparison of cross-section
glven for data calculated with rotations and mode slopes of a low-

. . aspect-ratio upper stage of a launch
and without the secondanf'y influ- vehicle. (A1l curves include the
ences of shear deformation and effects of shear and rotary
rotary inertia. The moment and inertia.)

shear values are compatible with

the relative mode amplitudes shown

in figure 3 and as established

by the least-squares method of comparison. Both the moment and shear data show
significant differences with increasing modes between solutions with and with-
out secondary influences, the magnitudes of the differences increasing with
increasing modes. An appreciable separation in the right nodal point of the
third mode moment curves is observed. The startling differences that are
observed between amplitudes of the comparative data for the second and third
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modes are principally attributed to the lower frequencies and consequently
lower inertia loading on the beam for the solutions with secondary effects.

an
100 —— Without rotary inertia and shear deformation
. — - ~=With rotary inertia and shear deformation
First mode

ix 106 Without rotary inertia and shear geformation )
——-— With rotary inertie and shear deformation

|- First mode ———

o

g
1y 10° 8§ 2xid
5 Second mode — ——— b}
2 - XS g
hel
§ ° SES - E 1 second mode
E ™~ / g
¢ 1 S g 0 = -
9 I T b
g K -
.o L ~ -1 L
5 3
= N
1 2 rlos o IR
5
=5 4 ol - =~

}'Third mode

| Third mode

2 | 1 L L — ) Y N W R
0 20 4o 60 8o 100 o 20 40 60 8o 100

x, inches %, inches

Figure 7.~ Comparison of mode shears

Figure 6.- Comparison of the mode ; C c
moments from solutions with from solutions with and without
and without secondary effects secondary ?ffects for a low-

aspect-ratio upper stage of a

for a low-aspect-ratio upper

stage of a launch vehicle. launch vehicle.

CONCLUDING REMARKS

A recurrence solution is presented that is especially suitable for
obtaining highly descriptive modal data on severely discontinuous nonuniform
beamlike structures; the solution includes the secondary influences of rotary
inertia and shear deformation. Data are provided for helping the analyst in
estimating the probable significance of shear deformation and rotary inertia
in free-free natural frequencies of launch vehicles.

Numerical examples of the solution are included for a first-stage and a
fourth-stage configuration of a research vehicle. The secondary influences of
rotary inertia and shear deformation had trivial effects on the first-stage
data, but were found to have very significant effects on the data for the

fourth stage.

In most practical applications to launch vehicles, it is concluded that
shear deformation is considerably more important than rotary inertia. Accept-
able results could generally be obtained by including shear deformation only.
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The authors' experiences indicate that, in general, for most beam applica-
tions the secondary influences have the least obvious effect on the mode shapes.
An appreciable influence is noted in reducing frequencies and large effects are
experienced on the mode shears and moments. The appearance of discontinuities
in the mode slopes is a further influence resulting from the consideration of
shear deformation.

The addition of shear deformation to elementary beam vibration theory can
result in an inflection in the mode shape outboard of the outermost nodal
points.

Successful and economical solutions by the subject method are intimately
dependent upon details of the computing program. Some salient points are dis-
cussed on appropriateness of input data, superposition problems, numerical
integration intervals, and frequency iteration routine.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 9, 1965.
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TABLE I.- PHYSICAL CHARACTERISTICS OF A MULTISTAGE LAUNCH VEHICLE

X, z, m EI, KAG,
in. 1b-sec? ].b—secé/in.2 1b-in.2 1b
-34.35 1.70 0.01743 0.100 x 109 10.00 x 100
-19.35 1.70 01743 .100 10.00
-19.35 14.70 .06030 14770 33.54
0 14.70 .06030 14,770 33.54
17.85 14.70 .06030 6.743 33,54
17.85 14.70 .06030 6.743 33,54
19.35 1k.70 .06030 6.743 33,54
19.35 13.59 .1309% 6.743 59.34
20.85 13.59 .13094 6.743 59.34
20.85 13.59 .13094 34,59 59.34
71.65 13.59 13094 34.59 59.34
T1.65 6.61 .11350 34.59 59.34
204.85 6.61 .11350 34.59 59.34
204.85 6.61 .11350 8.352 59.34
206.35 6.61 .11350 8.352 59.34
206.35 1.50 .00895 8.352 209.00
207.85 1.50 .00895 8.352 209.00
207.85 1.50 .00895 94 .92 209.00
209.95 1.50 .00895 gk.92 209.00
209.95 1.50 .00895 6.914 209.00
211.45 1.50 .00895 6.91k4 209.00
211.45 .35 .00895 6.914 26.46
212.95 .34 .00895 6.914 26.00
212.95 .34 .00895 13.900 26.00
217.95 .31 .00895 10. 400 21.00
222.95 .20 .00895 8.000 17.00
227.95 .12 .00895 6.000 1%.80
232.95 .05 .00895 3.200 13.60
236.35 .Oh7 .00895 2.100 13.10
236.35 Nolilys .00895 1.4%03 13.10
237.85 .0U5 .00895 1.403 12.92
237.85 1.40 .01hTh 1.403 31.85
239.35 1.395 .01h7h 1.403 36.89
239.35 1.395 .01h7h 4 .000 36.89
2L5.25 1.336 LO1hT7h 3.370 56.71
245.25 1.336 .01kl 1.042 56.71
246.75 1.321 NoaR M 1.0k42 61.75
246,75 1.321 L0147l 1.042 61.75
248.25 1.316 L0OL1h7h 1.042 61.75
248.25 1.316 .01h7h 3.361 61.75
257.85 1.200 Lo1h7h 3.361 61.75
257.85 1.200 .03673 3.361 61.75
258.75 1.200 .03673 3.361 61.75
258.75 1.200 .03673 4.910 33.69
262.85 1.200 .03673 k.910 33.69
262.85 .385 .026668 4,910 33.69
Lok .85 .385 .026668 k.910 33.69
Lok .85 .385 .026668 1.665 33.69
426.35 .385 .026668 1.665 33%.69
426.35 1.090 .011718 1.665 24,88
427.85 .011718 1.665 24.88

1.090
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TABLE I.- PHYSICAL CHARACTERISTICS OF A MULTISTAGE LAUNCH VEHICLE - Concluded

in.

Lo7.85
kil 85
kil 85
h46.35
4h6 .35
Iy7.85
447.85
451.35
451.35
604 .55
604.55

606.05
606.05
607.55
607.55
610.00
614.00
618.35
618.35
619.85
619.85

621.35
621.35
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.140
.1%0
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.1ko
.140
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.380
.380
.380
.380

.380

m,
lb-secg/in.2
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.011718
.011718
.011718
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.03360
.03360
.03360
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.026668
.026668

.026668
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.00585
.00585
.00585
.00585
.00585
.00585
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.00266
.00266
.00266
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.oLkh57
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L0034k
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.01409
.01409
.01409
.01409
.014k09
.01409
.01409
.000259
.000259

e o R S,
Q
3
'_l

KAG,
1b

24,88 x 106
24,88
24.88
24.88
33.69
33.69
33.69
33.69
33.69
33.69
33.69

33.69
24 .08
2k .61
24,61
25.48
26.89
28.43
28.43
28.96
6.639

HHEMFFFOOOOO
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N
\O

.000
.000

o e e e e
o
&
o

.000
.000
.000
.500

o

.500
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TABLE II.-~ REDUCTION OF FREE-FREE NATURAL FREQUENCIES OF A MULTISTAGE RESEARCH VEHICLE

DUE TO ROTARY INERTIA AND SHEAR DEFORMATION

Frequency, radians/sec

Reduction in frequency, percent

Mode
Wizgztiar2§zry YizgtithZg With rotary With shear ?ig?tzztzzg With rotary With shear
shear deformation|shear deformation inertia only |deformation only shear deformation inertia only\deformation only
Four-stage launch vehicle, aspect ratio = 25
1 16.120 16.017 16.054 16.083 0.64 0.41 0.23
2 47 457 46,521 47,195 L6770 1.97 .55 1.h45
3 98.686 9%.943 97.566 ok, 727 4,81 1.13 .01
Fourth stage of multistage launch vehicle, aspect ratio = 5.0
1 438,557 334,776 400.968 348.945 23.66 8.57 20.43
2 1367.317 760.445 1104.970 803.663 4k 38 19.19 41,22
3 2292.381 960.819 1655.463 1049.897 58.09 27.78 54,20
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